Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2886, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210583

RESUMO

Cisplatin kills proliferating cells via DNA damage but also has profound effects on post-mitotic cells in tumors, kidneys, and neurons. However, the effects of cisplatin on post-mitotic cells are still poorly understood. Among model systems, C. elegans adults are unique in having completely post-mitotic somatic tissues. The p38 MAPK pathway controls ROS detoxification via SKN-1/NRF and immune responses via ATF-7/ATF2. Here, we show that p38 MAPK pathway mutants are sensitive to cisplatin, but while cisplatin exposure increases ROS levels, skn-1 mutants are resistant. Cisplatin exposure leads to phosphorylation of PMK-1/MAPK and ATF-7 and the IRE-1/TRF-1 signaling module functions upstream of the p38 MAPK pathway to activate signaling. We identify the response proteins whose increased abundance depends on IRE-1/p38 MAPK activity as well as cisplatin exposure. Four of these proteins are necessary for protection from cisplatin toxicity, which is characterized by necrotic death. We conclude that the p38 MAPK pathway-driven proteins are crucial for adult cisplatin resilience.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cisplatino/toxicidade , Cisplatino/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores Ativadores da Transcrição
2.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36939052

RESUMO

Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.


Assuntos
ATPases Transportadoras de Arsenito , Proteínas de Caenorhabditis elegans , Diabetes Mellitus Tipo 2 , Secreção de Insulina , Chaperonas Moleculares , Animais , Camundongos , ATPases Transportadoras de Arsenito/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Proinsulina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
3.
PLoS Genet ; 18(12): e1010538, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480541

RESUMO

ASNA1 plays an essential role in cisplatin chemotherapy response, type 2 diabetes, and heart disease. It is also an important biomarker in the treatment response of many diseases. Biochemically, ASNA1 has two mutually exclusive redox-modulated roles: a tail-anchored protein (TAP) targeting function in the reduced state and a holdase/chaperone function in the oxidized state. Assigning biochemical roles of mammalian ASNA1 to biomedical functions is crucial for successful therapy development. Our previous work showed the relevance of the C. elegans ASNA-1 homolog in modeling cisplatin response and insulin secretion. Here we analyzed two-point mutants in highly conserved residues in C. elegans ASNA-1 and determined their importance in separating the cisplatin response function from its roles in insulin secretion. asna-1(ΔHis164) and asna-1(A63V) point mutants, which both preferentially exist in the oxidized state, displayed cisplatin sensitivity phenotype as well as TAP insertion defect but not an insulin secretion defect. Further, using targeted depletion we analyzed the tissue requirements of asna-1 for C. elegans growth and development. Somatic depletion of ASNA-1 as well as simultaneous depletion of ASNA-1 in neurons and intestines resulted in an L1 arrest. We concluded that, targeting single residues in ASNA-1 affecting Switch I/Switch II domain function, in comparison to complete knockdown counteracted cisplatin resistance without jeopardizing other important biological functions. Taken together, our study shows that effects on health caused by ASNA1 mutations can have different biochemical bases.


Assuntos
Proteínas de Caenorhabditis elegans , Diabetes Mellitus Tipo 2 , Animais , Caenorhabditis elegans/metabolismo , Cisplatino/farmacologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , ATPases Transportadoras de Arsenito/química , ATPases Transportadoras de Arsenito/genética , ATPases Transportadoras de Arsenito/metabolismo
4.
Sci Rep ; 11(1): 8678, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883621

RESUMO

Cisplatin is a frontline cancer therapeutic, but intrinsic or acquired resistance is common. We previously showed that cisplatin sensitivity can be achieved by inactivation of ASNA-1/TRC40 in mammalian cancer cells and in Caenorhabditis elegans. ASNA-1 has two more conserved functions: in promoting tail-anchored protein (TAP) targeting to the endoplasmic reticulum membrane and in promoting insulin secretion. However, the relation between its different functions has remained unknown. Here, we show that ASNA-1 exists in two redox states that promote TAP-targeting and insulin secretion separately. The reduced state is the one required for cisplatin resistance: an ASNA-1 point mutant, in which the protein preferentially was found in the oxidized state, was sensitive to cisplatin and defective for TAP targeting but had no insulin secretion defect. The same was true for mutants in wrb-1, which we identify as the C. elegans homolog of WRB, the ASNA1/TRC40 receptor. Finally, we uncover a previously unknown action of cisplatin induced reactive oxygen species: cisplatin induced ROS drives ASNA-1 into the oxidized form, and selectively prevents an ASNA-1-dependent TAP substrate from reaching the endoplasmic reticulum. Our work suggests that ASNA-1 acts as a redox-sensitive target for cisplatin cytotoxicity and that cisplatin resistance is likely mediated by ASNA-1-dependent TAP substrates. Treatments that promote an oxidizing tumor environment should be explored as possible means to combat cisplatin resistance.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Cisplatino/farmacologia , Insulina/metabolismo , Animais , Resistência a Medicamentos , Retículo Endoplasmático/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
5.
Development ; 147(20)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33037039

RESUMO

Insulin/IGF signaling in Caenorhabditis elegans is crucial for proper development of the dauer larva and growth control. Mutants disturbing insulin processing, secretion and downstream signaling perturb this process and have helped identify genes that affect progression of type 2 diabetes. Insulin maturation is required for its proper secretion by pancreatic ß cells. The role of the endoplasmic reticulum (ER) chaperones in insulin processing and secretion needs further study. We show that the C. elegans ER chaperone ENPL-1/GRP94 (HSP90B1), acts in dauer development by promoting insulin secretion and signaling. Processing of a proinsulin likely involves binding between the two proteins via a specific domain. We show that, in enpl-1 mutants, an unprocessed insulin exits the ER lumen and is found in dense core vesicles, but is not secreted. The high ER stress in enpl-1 mutants does not cause the secretion defect. Importantly, increased ENPL-1 levels result in increased secretion. Taken together, our work indicates that ENPL-1 operates at the level of insulin availability and is an essential modulator of insulin processing and secretion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP70/química , Secreção de Insulina , Proteínas de Membrana/química , Chaperonas Moleculares/metabolismo , Proinsulina/metabolismo , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Compartimento Celular , Sequência Conservada , Embrião não Mamífero/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Fluorescência Verde/metabolismo , Chaperonas Moleculares/química , Mutação/genética , Neurônios/metabolismo , Domínios Proteicos , Transporte Proteico , Vesículas Secretórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...